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Abstract. Based on the bosonization of vertex operators for theA
(1)
n−1 face model by Asai,

Jimbo, Miwa and Pugai, using vertex-face correspondence we obtain vertex operators for the
Zn-symmetric Belavin model, which are constructed by deformed boson oscillators.

1. Introduction

The Bosonization of vertex operators for solvable models is well known to be a very
powerful way of studing their correlation functions [1–3, 28]. These vertex operators realize
the Zamolodchikov–Faddeev algebras [4–7] with theR-matrices of the models.

Recently, the studies ofq-deformed Virasoro algebra [8, 21, 22] and its vertex operators
have made it clearer to understand the correspondence between the unitary minimal
conformal models [26] and the ABF models [11]. This has been considered as a mystery for
a long time. The bosonization forq-deformed Virasoro algebra and its vertex operators also
make it possible to calculate the correlation functions for ABF models. The bosonization for
q-deformedW algebra [21, 22] and its vertex operations [10, 21] encourage the investigation
of theA(1)n−1 RSOS models [15]. Naively, theq-deformedW algebra (includingq-deformed
Virasoro algebra) would play an important role in the elliptic face models. How about
the elliptic-vertex model, eight-vertex model andZn Belavin model? Jimboet al [20]
obtained the difference equations for eight-vertex operators using the method of the corner
transfer matrix (CTM) and the method of ‘physical picture’, moreover, the spontaneous
polarization of the eight-vertex model was also obtained. Quano [19] obtained, by using
the same method, the difference equations for theZn Belavin model and the corresponding
spontaneous polarization. However, to calculate general correlation functions for the elliptic
vertex model practically is very complicated and is still an open problem [24, 27]. But the
other effective way to solve these difference equations is to realize the vertex operators in
terms of bosonic free fields [3, 8, 9, 24, 27, 29].

After the papers on trigonometric models [1–3] several important works for elliptic
models have been done [8–10]. Lukyanovet al [8] gave the bosonization of vertex operators
for the ABF model. Miwa and Weston [9] gave the corresponding bosonized boundary
operators. Recently, Asaiet al [10] obtained the bosonized vertex operators for theA

(1)
n−1

face model [12]. These works will greatly promote the study of solvable models of the
elliptic type. Based on their work, using vertex-face correspondence [13–15], we obtain
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bosonized vertex operators for theZn-symmetric Belavin model [16, 17]. The construction
of vertex operators and its dual is the main result of our paper.

In sections 2 and 3 we find an intertwiner which intertwines the BelavinR-matrix and
the Boltzmann weight of theA(1)n−1 face model in [10]. In section 4 we then review the
vertex operators in [8-10] and their exchange relations. In section 5, by combining their
vertex operators and the intertwiners, we finally obtain the bosonization for vertex operators
of theZn-symmetric Belavin model.

2. Vertex-face correspondence

Given an integern (2 6 n), and two complex numbersτ and w (Im τ > 0), we can
construct theZn-symmetric BelavinR-matrix [16, 17]. Definen× n matricesg, h andIα

gjk = ωjδjk hjk = δj+1,k ω = exp

(
2iπ

n

)
Iα = I(α1,α2) = gα2hα1 (α1, α2) ∈ Z2

n.

DefineI (j)α = I ⊗ I ⊗ . . .⊗ Iα ⊗ I ⊗ . . .⊗ I , whereIα is at thej th site,I is then× n unit
matrix, and

Wα(z, τ ) = 1

n
θ

[ 1
2 + α1

n
1
2 + α2

n

] (
z + w

n
, τ
)
/θ

[ 1
2 + α1

n
1
2 + α2

n

] (w
n
, τ
)

θ

[
a

b

]
(z, τ ) =

∑
m∈Z

exp{iπ(m+ a)[(m+ a)τ + 2(z + b)]}

σ0(z, τ ) = θ
[ 1

2
1
2

]
(z, τ ).

TheZn-symmetric BelavinR-matrix is

R̄jk(z, τ ) = σ0(w, τ)

σ0(z + w, τ)
∑
α∈Z2

n

Wα(z, τ )I
(j)
α (I−1

α )(k) (1)

which satisfies the Yang–Baxter equation (YBE)

R12(z1− z2, τ )R13(z1− z3, τ )R23(z2− z3, τ )

= R23(z2− z3, τ )R13(z1− z3, τ )R12(z1− z2, τ ). (2)

Given ann-vector a ∈ Zn, we define the Boltzmann weight of theA(1)n−1 face model
[12], which can be written in the vertex form̄W(a|z, τ )µ′ν ′µν , whose non-zero elements are

W̄ (a|z, τ )µµµµ = 1 (3)

W̄ (a|z, τ )µννµ =
σ0(z + w, τ)
σ0(w, τ)

σ0(z + aµνw, τ)
σ0(aµνw, τ)

µ 6= ν (4)

W̄ (a|z, τ )µνµν =
σ0(z, τ )σ0(aµνw − w, τ)
σ0(z + w, τ)σ0(aµνw, τ)

µ 6= ν (5)

whereaµν is defined bya = (a1, . . . , an)

aµ = aµ − 1

n

n∑
l=1

al + wµ (6)

aµν = aµ − aν = aµ − aν + wµ − wν (7)
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where {wj } is a set of generic complex numbers specified by the face model under
investigation.

The intertwiners of the vertex-face correspondence are [14, 15]n-column vectors
ϕµ,a(z, τ ) whosekth component is

ϕ(k)µ,a(z, τ ) = θ(j)
(
z + nw

(
aµ + 1− 1

n

)
, τ

)
θ(j)(z, τ ) = θ

[ 1
2 − j

n
1
2

]
(z, nτ).

The vertex-face correspondence is

R̄(z1− z2, τ )ϕµ,a+eν (z1, τ )⊗ ϕν,a(z2, τ )

=
∑
µ′ν ′

W̄ (a|z1− z2, τ )
µν

µ′ν ′ϕµ′,a(z1, τ )⊗ ϕν ′,a+eµ′ (z2, τ ) (8)

whereeµ = (0, 0, . . . ,1, 0, . . . ,0) and ‘1’ is at theµth site. We can introducen-row vectors
∼
ϕµ,a (z, τ ) such that∑

k

∼
ϕ
(k)

µ,a (z, τ )ϕ
(k)
ν,a(z, τ ) = δµν. (9)

Thus we have∑
µ

ϕµ,a(z, τ )
∼
ϕµ,a (z, τ ) = I. (10)

Note that
∼
ϕ
(k)

µ,a (z, τ ) is a function ofa, µ, k, z, n, τ, w, {wj }. One can show the vertex-face

correspondence by
∼
ϕµ,a

∼
ϕµ,a (z1, τ )⊗

∼
ϕν,a+eµ (z2, τ )R̄(z1− z2, τ )

=
∑
µ′ν ′

W̄ (a|z1− z2, τ )
µ′ν ′
µν

∼
ϕµ′,a+eν′ (z1, τ )⊗

∼
ϕν ′,a (z2, τ ). (11)

3. Modular transformation of Boltzmann weight

Since the Boltzmann weight in equations (3)–(5) is not the same as that in [10], we need to
rescale theZn BelavinR-matrix and specify the parametersz andτ , so that we can directly
use the beautiful results of [10]. Let us restrict the parameterw : Imw > 0 and set

x = eiπw |x| < 1 (Imw > 0) n+ 26 r
[v] = eiπ wv2

r σ0(wv, rw) = constant× x v2

r
−v2x2r (x2v)

2q(z) = (z, q)(qz−1, q)(q, q) (z, q) =
∞∏
n=0

(1− zqn).

Note that the modular transformation for the theta functionσ0(z, τ )

σ0

(
z

τ
,−1

τ

)
= constant× e

iπz2

τ σ0(z, τ ) (12)

we have

[v] = constant× σ0

(
vw

rw
,− 1

rw

)
. (13)
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Let theZn-symmetric BelavinR-matrix be rescaled, and the parametersz andτ be specified
as follows

R

(
v,− 1

rw

)
= r1(−v)

σ0
(

1
r
,− 1

rw

)
σ0
(
v+1
r
,− 1

rw

) ∑
α

Wα

(
v,− 1

rw

)
Iα ⊗ I−1

α

Wα

(
v,− 1

rw

)
= σα

(
v
r
+ 1

nr
,− 1

rw

)
nσα

(
1
nr
,− 1

rw

)
r1(v) = x2v (r−1)(n−1)

nr
g1(−v)
g1(v)

g(v) = {x
2+2v}{x2r+2n−2+2v}
{x2r+2v}{x2n+2v}

{z} = (z; x2r , x2n) (z; q1, q2, . . . , qm) =
∞∏
{nj }=0

(1− zqn1
1 q

n2
2 . . . qnmm )

(14)

we also specify the intertwinersϕ and
∼
ϕ as follows

ϕ(k)µ,a

(
v,− 1

rw

)
= θ(k)

(
v + n(aµ + 1− 1

n
)

r
,− 1

rw

)
∑
k

∼
ϕ
(k)

µ,a

(
v,− 1

rw

)
ϕ(k)ν,a

(
v,− 1

rw

)
= δµν.

(15)

The vertex-face correspondence becomes

∼
ϕµ,a

(
v1,− 1

rw

)
⊗ ∼ϕν,a+eµ

(
v2,− 1

rw

)
R

(
v1− v2,− 1

rw

)
=
∑
µ′ν ′

W

(
a|v1− v2,− 1

rw

)µ′ν ′
µν

∼
ϕµ′,a+eν′

(
v1,− 1

rw

)
⊗ ∼ϕν ′,a

(
v2,− 1

rw

)
.

(16)

Using equation (12), the non-zero element ofW
(
a|v,− 1

rw

)µ′ν ′
µν

can be written

W

(
a|v,− 1

rw

)µµ
µµ

= r1(−v) (17)

W

(
a|v,− 1

rw

)µν
µν

= r1(−v) [v][aµν − 1]

[v + 1][aµν ]
(18)

W

(
a|v,− 1

rw

)µν
νµ

= r1(−v) [v + aµν ][1]

[v + 1][aµν ]
. (19)

It can be found that our Boltzmann weightW
(
a| − v,− 1

rw

)µ′ν ′
µν

is the same as the Boltzmann

weightW

(
a + εµ + εν a + εµ
a + εν a

|v
)

in [10]

W

(
a| − v,− 1

rw

)µµ
µµ

= r1(v) = W
(
a + 2εµ a + εµ
a + εµ a

|v
)

(20)

W

(
a| − v,− 1

rw

)µν
µν

= r1(v) [v][aµν − 1]

[v − 1][aµν ]
= W

(
a + εµ + εν a + εµ
a + εν a

|v
)

(21)

W

(
a| − v,− 1

rw

)µν
νµ

= r1(v) [v − aµν ][1]

[v − 1][aµν ]
= W

(
a + εµ + εν a + εν
a + εν a

|v
)
. (22)
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4. Vertex operators in theA(1)
n−1 face model

We review Asaiet al’s [10] bosonization of vertex operators for theA(1)n−1 face model.

According to [8–10] we introduce bosonic oscillatorsβjm(1 6 j 6 n − 1, m ∈ Z\{0})
which satisfy

[βjm, β
j

m′ ] = m
[(n− 1)m]x [(r − 1)m]x

[nm]x [rm]x
δm+m′,0 (23)

[βjm, β
k
m′ ] = −mxsgn(j−k)nm [m]x [(r − 1)m]x

[nm]x [rm]x
δm+m′,0 j 6= k

[a]x = xa − x−a
x − x−1

x = eiπw.

(24)

Defineβnm = −x2mn∑n−1
j=1 x

−2jmβ
j
m.

Introduce zero modespµ, qµ(µ = 1, . . . , n), such that [ipµ, qν ] = δµ,ν . Consider
orthonormal bases{eµ}, µ = 1, . . . , n〈eµ, eν〉 = δµν , and set

eµ = eµ − 1

n

∑
k

ek.

Define

Qeµ = qµ −
1

n

∑
k

qk Peµ = pµ −
1

n

∑
k

pk.

One has

[iPeµ,Qeν ] = δµν −
1

n
= 〈eµ, eν〉.

Let the vacuum|0〉 be such that

βjm|0〉 = pµ|0〉 = 0 for m > 0

and that

|l, k〉 = ei
√

r
r−1Ql−i

√
r−1
r
Qk |0〉

wherel =∑j=1 lj ēj , k =
∑
j=1 kj ēj and{lj }, {kj } are integers. Let

γ = γj ej β =
∑
j

βj ej Pk =
∑
j

kjPej

we have

[iPγ ,Qβ ] = 〈γ , β〉 = 〈γ, β〉
whereγ =∑j γj ej β =

∑
j βj ej . The Fock spaceFl,k = C[{βj−1, β

j

−2, . . .}16j6n]|l, k〉 with

βjm|l, k〉 = 0(m > 0)

Pγ |l, k〉 =
〈
γ ,

√
r

r − 1
l −

√
r − 1

r
k

〉
.

(25)

For j = 1, . . . , n− 1 define:

the simple rootαj = ej − ej+1 the basic weightωj =
j∑
k=1

ek

ξj (v) = ei
√

r−1
r
(Qαj
−iPαj 2v ln x)e

∑
m6=0

1
m
(β

j
m−βj+1

m )x−(j+2v)m

ηj (v) = e−i
√

r−1
r
(Qωj
−iPωj 2v ln x)e−

∑
m6=0

1
m

∑j

k=1 β
k
mx

(j−2k+1−2v)m
.
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Introduce vertex operators

φµ(v) =
∮ µ−1∏
j=1

d(x2vj )

2iπx2vj
η1(v)ξ1(v1) . . . ξµ−1(vµ−1)

µ−1∏
j=1

f (vj − vj−1, π̂jµ)

π̂µ =
√
r(r − 1)Peµ + wµf (v, y) =

[v + 1
2 − y]

[v − 1
2]

(26)

where{wj } is a set complex number defined in equation (6) andπ̂µ is a set of operators.
Here we setv0 = v and take the integration contours to be simple closed curves around the
origin satisfying

|xx2vj−1| < |x2vj | < |x−1x2vj−1| (j = 1, . . . , µ− 1).

Following [10], one can verify

φµ(v1)φν(v2) =
∑
µ′ν ′

φν ′(v2)φµ′(v1)W

(
π̂ |v2− v1,− 1

rw

)µν
µ′ν ′

.

Namely,

φµ(−v1)φν(−v2) =
∑
µ′ν ′

φν ′(v2)φµ′(v1)W

(
π̂ |v1− v2,− 1

rw

)µν
µ′ν ′

. (27)

Now the Boltzmann weightW
(
π̂ |v,− 1

rw

)µν
µ′ν ′ is some functions like equations (17)–(19) with

aµν replaced by the operator̂πµν . Thus, it does not commutate with the vertex operator
φµ(v) and the exchange relations equation (27) should be written in that order.

5. Vertex operators for theZn-symmetric Belavin model

In the ‘physical picture’ of lattice models [1, 3, 15, 20], the vertex operators for theZn-
symmetric Belavin model can be realized by a half-column transfer matrix, and these vertex
operators realize the Zamolodchikov–Faddeev algebra with theZn-symmetricR-matrix as
its construction coefficent [19, 20, 29]

Zj(z1)Z
k(z2) =

∑
j ′k′

Zk
′
(z2)Z

j ′(z1)R
jk

j ′k′(z1− z2, τ ) (28)

where theR-matrix is defined in equation (14) andZj(z) are some operators acting on
the eigenvaluevector spacesH i of the CTM’s HamiltonianD(i) [3, 13]. The correlation
functions are expressed in terms of the trace of vertex operators in the spacesH i . For more
detail, refer to [3].

Our main idea is to realize these vertex operators in a direct sum of Fock space
Li = ⊕{mi }∈ZFl,3i+∑n−1

j=1 mjαj
, where3i (resp. αi) is the basic weight of Lie algebraAn−1

(resp. the simple root of Lie algebraAn−1). This representation is expected to be irreducible
for the genericr.

Define âµ = −
√

r
r−1pµ + wµ + r

r−1〈eµ, l〉âµν = âµ − âν , we have

âµe−i
√

r−1
r
Qν = e−i

√
r−1
r
Qν (âµ + δµν)

π̂µνFl,k = (r〈eµ − eν, l − k〉 + 〈eµ − eν, k〉 + wµ − wν)Fl,k
âµνFl,k = (〈eµ − eν, k〉 + wµ − wν)Fl,k.

(29)
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From the above equation and [v + r] = −[v], we can derive

W

(
π̂ |v,− 1

rw

)µν
µ′ν ′
|Fl,k = W

(
â|v,− 1

rw

)µν
µ′ν ′
|Fl,k . (30)

From equations (11) and (27), we can construct the bosonization for the vertex operators
of theZn-symmetric Belavin model which satisfy relation equation (28) by specifying the
parametersz andτ . Define

8(j)(v) =
∑
µ

φµ(−v)
∼
ϕ
(j)

µ,â

(
v + δ,− 1

rw

)
(31)

where δ is a generic parameter. Note that equations (27) and (31) and the vertex-face
correspondence equation (11), have

8(i)(v1)8
(j)(v2)|Fl,k =

∑
µν

φµ(−v1)
∼
ϕ
(i)

eµ,â

(
v1+ δ,− 1

rw

)
×φν(−v2)

∼
ϕ
(j)

eν ,â

(
v2+ δ,− 1

rw

)
|Fl,k

=
∑
µν

φµ(−v1)φν(−v2)
∼
ϕ
(i)

eµ,â+eν

(
v1+ δ,− 1

rw

)
∼
ϕ
(j)

eν ,â

(
v2+ δ,− 1

rw

)
|Fl,k

=
∑
µν

∑
µ′ν ′

φν ′(v2)φµ′(v1)W

(
π̂ |v1− v2,− 1

rw

)µν
µ′ν ′

∼
ϕ
(i)

eµ,â+eν

(
v1+ δ,− 1

rw

)
× ∼ϕ

(j)

eν ,â

(
v2+ δ,− 1

rw

)
|Fl,k

=
∑
i ′j ′

∑
µ′ν ′

φν ′(v2)φµ′(v1)
∼
ϕ
i ′

eµ′ ,â

(
v1+ δ,− 1

rw

)
∼
ϕ
j ′

eν ,â+eµ

(
v2+ δ,− 1

rw

)
×Riji ′j ′

(
v1− v2,− 1

rw

)
|Fl,k .

Namely, we have the bosonization for vertex operators of theZn-symmetric Belavin model

8(i)(v1)8
(j)(v2)|Li =

∑
i ′j ′
8(j ′)(v2)8

(i ′)(v1)R
ij

i ′j ′

(
v1− v2,− 1

rw

)
|Li . (32)

Moreover, the dual vertex operators8∗j (v) are needed for construction. We define the
dual-vertex operators8∗µ(v) through the skew-symmetric fusion ofn− 18(v) [10]

8∗j (v) =
∑
µ

φ
∗(n−1)
µ

(
v − n

2

)
A−1
µ ϕ

j

eµ,â−eµ

(
v,− 1

rw

)

Aµ = (−1)n−1 1

(x2; x2r )(x2r−2; x2r )

n∏
k=1

[1+ π̂kµ]

φ
∗(n−1)
µ (v) =

∮ n−1∏
j=µ

d(x2vj )

2iπx2vj
ηn−1(v)ξn−1(vn−1) . . . ξµ(vµ)

n∏
j=µ+1

f (vj−1− vj , π̂µj )

where we setvn = v and |xx2vj−1| < |x2vj | < |x−1x2vj−1| (j = µ, . . . , n− 1).
Following equation (c.20) in [10] and equation (10), we have the following invertibility

8(i)(v)8∗j (v)|Li = c−1
n δ

i
j × id|Li

cn = x r−1
r

n(n−1)
2n

gn−1(x
n)

(x2; x2r )(x2r; x2r )2n−3
gn−1(z) = {xnz}{x2r+nz}

{x2r+n−2z}{xn+2z}.
(33)
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6. Discussions

In this paper we construct the bosonic realization of vertex operators for theZn-symmetric
Belavin model using vertex-face correspondence. Actually, this procedure from the vertex
operators8j(v) of the Zn-symmetric Belavin model to the vertex operatorsφµ(v) of
theA(1)n−1 face model is a dynamic twisting procedure [30, 31], where the intertwining

functions
∼
ϕ
(k)

µ,â which take the value on the operators, play an important role. In order
to solve the correlation functions, we should construct the HamiltonianDi of CTM in the
Fock space which has the following commutation relations with the vertex operators8j(v)

of theZn-symmetric Belavin model

einπwD8j(v)e
−inπwD = 8j(v + n).

Unfortunately, this kind of operatorD has not been found, but, it is well known that the
A
(1)
n−1 face model is equivalent to theZn-symmetric Belavin model for the generic parameters

x andr (or w andτ ) [11, 13, 15]. Therefore, the correlation functions of the two equivalent
model should be related to each other somehow. We will further study the relation between
the two models. Fortunately, we can solve the correlation functions of theA(1)n−1 face
model by the method of bosonization.

To solve theA(1)n−1 face model, we construct the operatorDF (which is the Hamiltonian

of CTM in theA(1)n−1 face model) in the Fock space

DF =
∞∑
m=1

n−1∑
j=1

[rm]x
[(r − 1)m]x

�
j
−mS

j
m +

1

2

n−1∑
j=1

Pωj Pαj (34)

�
j
−m =

j∑
k=1

x(2k−j−1)mβk−m Sjm = x−jm(βjm − βj+1
m )

DF |Li = D(i)
F |Li

xnDF φµ(v)x
−nDF = φµ(v + n).

(35)

The correlation function for theA(1)n−1 face model can be described by the following trace
functions

F (i)(v1, . . . , vN)µ1,...,µN =
trLi (x

nDF φµ1(v1) . . . φµN (vN)φ
∗
µN
(vN)φ

∗
µN−1

(vN−1) . . . φ
∗
µ1
(v1)

trLi (xnDF )
.

(36)

Using the cyclic properties of a matrix trace and the relations, equations (32) and (35), it is
easy to derive the difference equations which the correlation functions should satisfy.

In the simple case forN = 1, the trace functions will give the character ofZ-grade
spacesLi

trLi (x
nDF ) =

∑
{mj }∈Z x

1
2

∑n−1
k=1

〈
ωk,
√

r
r−1 l−
√

r−1
r

(
3i+

∑n−1
j=1 mjαj

)〉〈
αk,
√

r
r−1 l−
√

r−1
r

(
3i+

∑n−1
j=1 mjαj

)〉
(x2n; x2n)n−1

.

(37)

Remark. Actually, the above character of spaceLi is the same as that of the level one
integrable representation ofq-deformed affine algebra (Uq( ˆsl(n)), of course, it is also equal
to that of the level one representation of affine algebra (A

(1)
n−1) [18]. Thus the spaceLi

would be some level one representation of some elliptic deformation of affine algebra [23],



Bosonization of vertex operators forZn-symmetric Belavin model 5695

which are not known but many phenomena suggest that it would exist. We expect to find
this elliptic deformation of affine algebra which would play a role of the symmetric algebra
of the elliptic-type model.

For genericN , one will encounter the following trace functions

trLi (x
nDF e

∑∞
m=1

∑n−1
j=1 A

j
mβ

j
−me

∑∞
m=1

∑n−1
j=1 B

j
mβ

j
mf Pγ ). (38)

Since the operator eQα would shift a Fock sector to another different sector unlessQα = 0,
the term of eQα in general non-zero trace functions should be equal to 1. We can calculate the
contributions in the trace for tensor components (i) oscillators modes and (ii) the zero mode
separately. The trace over the oscillator part can be carried out by using the Clavelli–Shapiro

technique [25]. More explicitly, let us introduce other oscillatorsβ
j

m(j = 1, . . . , n − 1)
which commute with the old onesβjm. Define the following operators acting in the tensor

product of Fock space ofβjm and that ofβ
j

m

bjm =
β
j
m ⊗ 1

1− x2nm
+ 1⊗ βj−m m > 0

bjm = βjm ⊗ 1+ 1⊗ βj−m
x2nm − 1

m < 0.

Now the trace of some bosonic operator O(βjm) can be expressed in terms of the vacuum
expectation value〈0|O(bjm)|0〉. Namely,

tr(xnDO(βjm)) =
〈0|O(bjm)|0〉
(x2n; x2n)

. (39)

We denote〈0|O(bjm)|0〉 by 〈〈O(βjm)〉〉 (we choose the same symbol as that of the Lukynov’s
in [8]). Due to the Wick theorem, the expectation value of a product of exponential operators
is factorized into the two point functions

〈〈η1(v1)η1(v2)〉〉 = 〈〈ηn−1(v1)ηn−1(v2)〉〉C2
1G1(v2− v1) (40)

〈〈η1(v1)ηn−1(v2)〉〉 = C2
1Gn−1(v2− v1) (41)

〈〈η1(v1)ξ1(v2)〉〉 = C1C2S(v2− v1) (42)

〈〈ξj (v1)ξj+1(v2)〉〉 = C2
2S(v2− v1) (43)

〈〈ξj (v1)ξj (v2)〉〉 = C2
2T (v2− v1) (44)

〈〈ηn−1(v1)ξn−1(v2)〉〉 = C1C2S(v2− v1) (45)

{z}′ = (z; x2r , x2n, x2n, x2n) ρ(ηj ) = C1 = {x
2+2n}′{x2r+4n−2}′
{x2r+2n}′{x4n}′

ρ(ξj ) = C2 = (x2n; x2n)
{x2+2n}
{x2r−2+2n}

G1(v) = {x
2+2v}′{x2r+2n−2+2v}′{x2+2n−2v}′{x2r+4n−2−2v}′
{x2r+2v}′{x2n+2v}′{x2r+2n−2v}′{x4n−2v}′

Gn−1(v) = {xn+2v}′{x2r+n+2v}′{x3n−2v}′{x2r+3n−2v}′
{x2r+n−2+2v}′{x2+n+2v}′{x2r+3n−2−2v}′{x3n+2−2v}′

S(v) = {x
2r−1+2v}{x2r−1+2n−2v}
{x1+2v}{x1+2n−2v}

T (v) = (x2v; x2n)(x2n−2v; x2n)
{x2+2v}{x2+2n−2v}

{x2r−2+2v}{x2r−2+2n−2v} .
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For all other combinations ofη1(v), ηn−1(v), ξj (v), we have〈〈XY 〉〉 = ρ(X)ρ(Y ) and
ρ(ηj ) = C1ρ(ξj ) = C2.

We only consider the type I vertex operators [3]. We can further construct the
bosonization for type II vertex operators of theZn-symmetric Belavin model.
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