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Abstract. Based on the bosonization of vertex operators forAljJél face model by Asai,
Jimbo, Miwa and Pugai, using vertex-face correspondence we obtain vertex operators for the
Z,-symmetric Belavin model, which are constructed by deformed boson oscillators.

1. Introduction

The Bosonization of vertex operators for solvable models is well known to be a very
powerful way of studing their correlation functions [1-3, 28]. These vertex operators realize
the Zamolodchikov—Faddeev algebras [4—7] with fyenatrices of the models.

Recently, the studies ef-deformed Virasoro algebra [8, 21, 22] and its vertex operators
have made it clearer to understand the correspondence between the unitary minimal
conformal models [26] and the ABF models [11]. This has been considered as a mystery for
a long time. The bosonization fgrdeformed Virasoro algebra and its vertex operators also
make it possible to calculate the correlation functions for ABF models. The bosonization for
g-deformedW algebra [21, 22] and its vertex operations [10, 21] encourage the investigation
of the Affjl RSOS models [15]. Naively, thg-deformedW algebra (including;-deformed
Virasoro algebra) would play an important role in the elliptic face models. How about
the elliptic-vertex model, eight-vertex model aj Belavin model? Jimbcet al [20]
obtained the difference equations for eight-vertex operators using the method of the corner
transfer matrix (CTM) and the method of ‘physical picture’, moreover, the spontaneous
polarization of the eight-vertex model was also obtained. Quano [19] obtained, by using
the same method, the difference equations forZhéelavin model and the corresponding
spontaneous polarization. However, to calculate general correlation functions for the elliptic
vertex model practically is very complicated and is still an open problem [24,27]. But the
other effective way to solve these difference equations is to realize the vertex operators in
terms of bosonic free fields [3, 8,9, 24, 27, 29].

After the papers on trigonometric models [1-3] several important works for elliptic
models have been done [8-10]. Lukyareial [8] gave the bosonization of vertex operators
for the ABF model. Miwa and Weston [9] gave the corresponding bosonized boundary
operators. Recently, Asai al [10] obtained the bosonized vertex operators for Ajﬁl
face model [12]. These works will greatly promote the study of solvable models of the
elliptic type. Based on their work, using vertex-face correspondence [13-15], we obtain
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bosonized vertex operators for thg-symmetric Belavin model [16, 17]. The construction
of vertex operators and its dual is the main result of our paper.

In sections 2 and 3 we find an intertwiner which intertwines the Bel&+matrix and
the Boltzmann weight of theﬂf}_’l face model in [10]. In section 4 we then review the
vertex operators in [8-10] and their exchange relations. In section 5, by combining their
vertex operators and the intertwiners, we finally obtain the bosonization for vertex operators
of the Z,-symmetric Belavin model.

2. Vertex-face correspondence

Given an integem (2 < n), and two complex numbers and w (Imz > 0), we can
construct theZ,-symmetric BelavinR-matrix [16, 17]. Definen x n matricesg, h and I,

j 2|7T
8jk = @’ §jk hijk = 841k o =exp( —

Iy = Ly, a0 = 8™ (aq, a0) € Z,f.

Definel = I1®I1®...9,®I®...® I, wherel, is at the jth site, I is then x n unit
matrix, and
1

1[iqe w 2+ (v
_ 2 n e 2 n —
Wa(z,r)—n9[1+?}<z+n,t)/@[%_i_o;z (nf)

2

0 [Z] (z,7) = Z explim(m 4+ a)[(m + a)t + 2(z + b)]}

meZ

2
The Z,-symmetric BelavinR-matrix is

1
oo(z, ) =0 [ %} 7).

Uo(w, ‘L')

R: ) =——""7
,/k( ) UO(Z+U),T)

D Walz, DI (U H® (1)

aeZ?
which satisfies the Yang—Baxter equation (YBE)
Ri2(z1 — 22, T)R13(z1 — 23, T) R23(22 — 23, 7)
= R23(z2 — z3, T)R13(21 — 23, T) R12(z21 — 22, 7). (2
Given ann-vectora € Z”, we define the Boltzmann weight of the ", face model
[12], which can be written in the vertex fori (a|z, r)ﬁ;“/, whose non-zero elements are

Walz, )" =1 (3

L
ooz + w, 1) 00(z + ayw, T)
L w#v (4)

oo(w, T) oo(a,w, 7)

Walz, )" =

Vi

= oo(z, T)GO(auvw —w,T)
Walz, v)l)y = v 5
(ale. Dl oo(z + w, T)oo(duww, 7) w7 ®)

wherea,,, is defined bya = (a1, ..., a,)
_ 1
a, =4a, — — Zal +w, (6)
n=

Auy =d, —ay, =0a, —ay +w, —w, ©)
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where {w;} is a set of generic complex numbers specified by the face model under
investigation.

The intertwiners of the vertex-face correspondence are [14pi&plumn vectors
¢u.a(z, T) whosekth component is

. 1
@,&li)a(zv 7) =6V (z +nw (aﬂ +1- n) , r)

‘ 1_j
09z, 1) =6 [ 2. :| (z,n7).
2
The vertex-face correspondence is

R(Zl — 22, T)(pp.,a-ke., (21, 1) ® ‘pv,a(Z2’ T)

= > Wialzs — 22, O}y #a (21, T) © 9 ase, (22, T) ®)
128%
wheree, = (0,0,...,1,0,...,0) and ‘1’ is at theuth site. We can introduce-row vectors

®,..q (z, T) such that
50 (k)
Y e @G T) = 8y ©)
k

Thus we have
Z‘pu.a (z,7) Pua (z,7) =1 (10)
"

~(k)
Note that(/?M (z, 7) is a function ofa, u, k, z, n, T, w, {w;}. One can show the vertex-face
correspondence bnflw

Yua (21, DO Pu.a+e, (z2, T)R(Zl —22,7T)

=Y Walzr— 22,0 Puate, @1, 1)@ Pua (22, 7). (11)

oY
3. Modular transformation of Boltzmann weight

Since the Boltzmann weight in equations (3)—(5) is not the same as that in [10], we need to
rescale theZ,, Belavin R-matrix and specify the parameterandz, so that we can directly
use the beautiful results of [10]. Let us restrict the parametefm w > 0 and set

x =™ x| <1 (Imw > 0) n+2<r

[v] = ei”%vzao(wv, rw) = constantx xﬁﬂ’@)czr (x?)
0,() = (z, 9)qz 4 9)(q. 9) (z.q) = H(l—zq”).
n=0

Note that the modular transformation for the theta functig(x, 7)

z 1 imz2
o0 ( —) = constantx e « og(z, T) (12)

T T
we have
1
[v] = constantx og (:Zj —) . (13)

rw
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Let theZ,,-symmetric BelavinR-matrix be rescaled, and the parametessdt be specified
as follows

1 ,’_7
R(v,—— | =r(— Lo Wolv,—— | L, ®I*?
<v rw) & U)Uo("+1 - Z (v ) @l

’ rw

.

rw ” i’ _ 1
no. (nr rw) (14)
(V) = x20 g1(—v) ) (2T (2222}
' a g1(v) g - {x2r+2U}{x2n+2v}

{2} = @ x%, x™) (2391, 92, -+ Gm) = H(l—zq?qg- ")

{n;}=

we also specify the intertwineis and¢ as follows

_ 1
o (o L) _go (V@D 1
wa \ V" r T orw

(15)
Y (s Yot (v k) =
n,a v, (pv alV rw — Thve
The vertex-face correspondence becomes
~ 1 ~ 1 1
go;t,a vy, ——— ® (pu,a-&-eu V2, ——— R V1 — V2, ———
rw rw rw
1\ ~ 1 ~ 1
= Z Wialvy — vz, —— Cpate, \ V1, —— | Py | V2, — |
— rw rw rw
n'v j7aY
(16)
Using equation (12), the non-zero eIementbe(a|v, —%)Z: can be written
1 2223
W (a2 )" = ni-w an
r a0
1\* y—1
w(at— ) =neo et 18)
rw/,, [v+ 1[a..]
1\"” [v+au]l]
wWlalv, —— =ri(—v)——HT 19
( | rw)uu 1( )[U + 1][a/w] ( )

W
v

It can be found that our Boltzmann weigit (a| —v, —%)

weightW(a+€“+E“ a+€"| ) in [10]

is the same as the Boltzmann

+e

W(a|—v,—rl>w—r1(v) (“at:: “Z%v) (20)

e ()
w (ot~ i) e T Rk S | @2
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@)
n

4. Vertex operators in the A", face model

We review Asaiet al’'s [10] bosonization of vertex operators for tlméljl face model.
According to [8-10] we introduce bosonic oscillatg#é(1 < j<n—1m e Z\{0})
which satisfy

[(n = Dm][(r — Dm],

j5 j, = Smvm’ 23
(8- ] oL I 0 (23)
i i X - 1 X
[:8;{1’ 18;]7(1’] = _mxsgr(Jik)anSm+mﬂO ] 7& k
[nm]x[rm]x (24)
[ao=""2_  x=dm
X — X
Define g = —x2m" Z;?;llezf’"ﬁ,{,.
Introduce zero modegp,, g,(nx = 1,...,n), such that [p,,q,] = é,,. Consider
orthonormal base&,}, n =1,...,n{e,, e,) = 8,,, and set
1
e, =e, — — Zek.
e
Define
0. — 1 Z P 1 Z
e, = du n qu e = Du " kpk.
One has

[Py Qe = B~ = (@0 20)

Let the vacuumO) be such that
B.10) = p,|10) =0 form >0

and that
1, k) = V07V T 0 )

wherel =3, l;e;, k=3 _,_s kje; and{l;}, {k;} are integers. Let
Y = viej B=Y B Po=) kP,

we have ] j
P, Qs =(¥.B) = (v, B)

wherey = Y. y;¢; B = Y_; Bie;. The Fock spac = C[{8’,. 5. .. J1<j<a]ll. k) with
Bl k) = 0(m > 0)

- r r—1 (25)
Pk = (7. [Tl = k).

Forj=1,...,n— 1 define:

j
the simple rooty; = ¢; — ¢, 1 the basic weights; = » ",
k=1

£(v) = v/ 7 (Qay =P 2010 3) o5, Lo & (B —pi a2

n;(v) = e*i«/ 2 (Quy i Py 2v|nx)ef Cgo m Lhey BlxlU-21-20m .
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Introduce vertex operators

d( 2u/) u=1
b (v) = 55 H o m@EED &1 [] £ v )
=t (26)
[v+3—)]
Ty =rr — 1)PE,‘, +w, f(v,y) = ﬁ
2

where{w;} is a set complex number defined in equation (6) ands a set of operators.
Here we sety = v and take the integration contours to be simple closed curves around the
origin satisfying

Ixx?U1 < [x2] < |x "1k G=1,....,n—1.

Following [10], one can verify

1\
b (V1) (v) = Z«m <v2)¢u(v1)W<n|v2—v1, ) :

w'

Namely,

1\
Ou(—v1)d,(—v2) = Zfﬁv (V) (V)W <ﬂ|U1 — vy, — ) . (27)

o W'

Now the Boltzmann weight/ (n|v _m) is some functions like equations (17)—(19) with

a,, replaced by the operatat,, . Thus |t does not commutate with the vertex operator
¢,.(v) and the exchange relations equation (27) should be written in that order.

5. Vertex operators for the Z,,-symmetric Belavin model

In the ‘physical picture’ of lattice models [1, 3, 15, 20], the vertex operators forZhe
symmetric Belavin model can be realized by a half-column transfer matrix, and these vertex
operators realize the Zamolodchikov—Faddeev algebra wittZthgymmetric R-matrix as

its construction coefficent [19, 20, 29]

27"z = ) 2Y )2 @R} (21— 22, T) (28)
R
where theR-matrix is defined in equation (14) and’(z) are some operators acting on
the eigenvaluevector spac#$’ of the CTM’s HamiltonianD® [3,13]. The correlation
functions are expressed in terms of the trace of vertex operators in the difac&sr more
detail, refer to [3].
Our main idea is to realize these vertex operators in a direct sum of Fock space

L; = Ga{mi}EZF],X;-&-Z}l;llm/aj’ where A; (resp. «;) is the basic weight of Lie algebra,_;
(resp. the simple root of Lie algebrg,_1). This representation is expected to be irreducible
for the generic.

Definea, = —. /-5 py + wu + 5 (eu, lay,, = a, — a,, we have
A —ju/=t i/ =1 A
a,e V7oL VTG, +45,,)

ﬁ,qul.k = (r(ep. —ey,l —k)+ <ep. —ey, k) + Wy, — wy) F k

) (29)
a;wFl,k = ((eu — €y, k> + Wy, — wu)Fl,k-
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From the above equation and ] = —[v], we can derive

1\ 1\*
W(fr|v,—) |Fl.k =W<&|U,—> |F,_k. (30)
rw w' rw W'

From equations (11) and (27), we can construct the bosonization for the vertex operators
of the Z,-symmetric Belavin model which satisfy relation equation (28) by specifying the
parameterg andr. Define

. ~() 1
(D () =
oY) (v) _XH:%(—U) @ (v+3,—rw> (31)
where § is a generic parameter. Note that equations (27) and (31) and the vertex-face
correspondence equation (11), have

. . ~ (i) 1
oV w)®V W)k, =Y u(—v0) @, 4 <v1 +3, —)
y7aY

rw
~() 1
XPu(—v2) @, 4 \v2+3,—— ||k,
rw

~(i) 1 ~() 1
= E Gu(—vD)Py(—v2) Py ape, (VI8 = ) @, s (V248 —— )k,
] rw rw

. 1\ ~® 1
=Y ) v )W Aur=vo, =) G (V18—

v W' rw

~(J) 1
XQDev& U2+8’_7 |Flk
, rw .

i 1\ ~J 1
= Z Z¢D,(v2)¢ﬂ/(v1) g06/1"& <vl * 5’ _VUJ) (pe"’&_'—eﬂ (vz * 8’ _>

YRV rw
i'j v

R !
XR; Ul—vg,—% |F,, -

Namely, we have the bosonization for vertex operators ofAhgymmetric Belavin model

V)@V (v, = Y ®Y (1)@ ()R, (vl — v, —) . (32)
i ’ rw
Moreover, the dual vertex operatorb’;(v) are needed for construction. We define the
dual-vertex operator®” (v) through the skew-symmetric fusion af— 1d(v) [10]

. —x(n—1) AN 1
de v) = Z¢H (v - E) AM (pej}“aieﬂ (v, _rw)
I

1 n
A, = ()"t — [1+ Al
(x2; x2) (xZ2; x2) ]1:[1

—— T A - .
o' ) = f]"[ %nnfl(v)smwﬂ)...su<vu) [T 71— v )
j=n ‘ j=n+1

where we seb, = v and |xx?%1| < [x%] < |x x| (j=pu,...,n — 1).
Following equation (c.20) in [10] and equation (10), we have the following invertibility
PO W)PI ()|, = ¢, '8} xid]y,
P gn-1(x™) " {x ) (33)
Cp=Xx7 2 o gn-1(z) = - .
(x2;x2’)(x2’;x2' )2n 3 {x2r+n 21}{xn+zz}
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6. Discussions

In this paper we construct the bosonic realization of vertex operators fof Hsymmetric
Belavin model using vertex-face correspondence. Actually, this procedure from the vertex
operators®;(v) of the Z,-symmetric Belavin model to the vertex operata@ig(v) of

the Afll)l face model is a dynamic twisting procedure [30,31], where the intertwining

funcnonsqo & which take the value on the operators, play an important role. In order
to solve the correlation functions, we should construct the HamiltoBianf CTM in the
Fock space which has the following commutation relations with the vertex operfors

of the Z,-symmetric Belavin model

elllﬂchD (U)e intwD CD (U +I’l)

Unfortunately, this kind of operatab has not been found, but, it is well known that the
Afllj , face model is equivalent to t1&,-symmetric Belavin model for the generic parameters
x andr (orw andrt) [11, 13, 15]. Therefore, the correlation functions of the two equivalent
model should be related to each other somehow. We will further study the relation between
the two models. Fortunately, we can solve the correlation functions ofdthe: face
model by the method of bosonization.

To solve theAilljl face model, we construct the operafor (which is the Hamiltonian

of CTM in the Aflljl face model) in the Fock space

n—1

oo n—1
[l"l’l’l]x j i
- I (34)
,;,: [ = Lyml, 2; i Fay
J
e I e e M R )
k=1
o (35)
Drl|r, = Dg'|1,

anFd)u(U)x_nDF — ¢li (U + n)
The correlation function for thet'”, face model can be described by the following trace
functions
trz, (X"PF @, (V1) - . By (V)P (WNIBE L (Un-1) ... B, (V1)

trL/. (X"DF)

FOW@L, oo, U)oy =
(36)

Using the cyclic properties of a matrix trace and the relations, equations (32) and (35), it is
easy to derive the difference equations which the correlation functions should satisfy.

In the simple case foiv = 1, the trace functions will give the character Bfgrade
space<;

151 7 =y n—1 7 =Yy n—1
Z x’z Zk:l(wk‘ ol- r (Ai+Z;’=1mj“i)>(“k~ = (Ai+2j=1 mi“j))
{m;}eZ

(xZn; x2n)n—1

trp, (x"Pr) =
(37)

Remark Actually, the above character of spate is the same as that of the level one
integrable representation gfdeformed affine algebrdf, (sl(n)), of course, it is also equal

to that of the level one representation of affine algebﬁt&_)() [18]. Thus the spacé,;
would be some level one representation of some elliptic deformation of affine algebra [23],
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which are not known but many phenomena suggest that it would exist. We expect to find
this elliptic deformation of affine algebra which would play a role of the symmetric algebra
of the elliptic-type model.

For genericN, one will encounter the following trace functions
try, (x"PreXn= St ABL @ Lot B . (38)

Since the operator% would shift a Fock sector to another different sector uni@ss= 0,

the term of €« in general non-zero trace functions should be equal to 1. We can calculate the
contributions in the trace for tensor components (i) oscillators modes and (ii) the zero mode
separately. The trace over the oscillator part can be carried out by using the Clavelli-Shapiro

technique [25]. More explicitly, let us introduce other oscillatg§|f§(j =1...,n—-121
which commute with the old onesy,. Define the following operators acting in the tensor
product of Fock space ¢f;, and that ofg,

. p®1 i
o 198,
blj71=IBrjn®l+x2nm_1 m<0.

Now the trace of some bosonic operato(rﬂ@) can be expressed in terms of the vacuum
expectation valug0|O(b;,)|0). Namely,
(0[0(B7)|0)
(x21; x2)
We denote(O|O(b,’;l)|O) by ((O(/S,{,))) (we choose the same symbol as that of the Lukynov’s

in [8]). Due to the Wick theorem, the expectation value of a product of exponential operators
is factorized into the two point functions

tr(x"?O(B1)) = (39)

(DN W2)) = (-1 -1V ) CZG1(v2 — v1) (40)
(D) m-1(v2)) = C;G1(v2 — v1) (41)
{(n1(v1)&1(v2)) = C1C28(v2 — v1) (42)
(& (V))& 1 (v2)) = CZS(v2 — v1) (43)
(& (VD& (v2)) = C3T (v2 — v1) (44)
{n—1(v1)€n-1(v2))) = C1C28(v2 — v1) (45)
1 = (s a0 12 N {220y [y 2 Hn-2y

7} =z x7, x, x7, x™) p(nj) =C1= 22y

(x2+2)

P(fj) =Cr = (x2n§ in)m

{x2+2u }/{x2r+2n72+2v }/{x2+2n72u }/{x2r+4n7272v }/

Gl(v) = {x2r+2v}/{x2n+2v}/{x2r+2n—2v}/{x4n—21)}/
{xn+2v}/{x2r+n+2v}/{x3n72v}/{x2r+3n72uy
Gnalv) = {2220y Phn 20y (28— 22y (2= 2u )
S( ) {x2r—l+2v}{x2r—l+2n—2v}
v) =

{xl+2v}{xl+21172v}
{x2+2v}{x2+2n—2v}
{x2r72+2v}{x2r72+2n72v} :

T(v) = (5 x) (72 2
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For all other combinations ofj1(v), n,-1(v), §;(v), we have(XY) = p(X)p(¥) and
p(m;) = C1p(§;) = Ca.

We only consider the type | vertex operators [3]. We can further construct the

bosonization for type Il vertex operators of tig-symmetric Belavin model.
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